Multigrid method based on a space-time approach with standard coarsening for parabolic problems

نویسندگان

  • Sebastião Romero Franco
  • Francisco José Gaspar
  • Marcio Augusto Villela Pinto
  • Carmen Rodrigo
چکیده

In this work, a space-time multigrid method which uses standard coarsening in both temporal and spatial domains and combines the use of different smoothers is proposed for the solution of the heat equation in one and two space dimensions. In particular, an adaptive smoothing strategy, based on the degree of anisotropy of the discrete operator on each grid-level, is the basis of the proposed multigrid algorithm. Local Fourier analysis is used for the selection of the crucial parameter defining such an adaptive smoothing approach. Central differences are used to discretize the spatial derivatives and both implicit Euler and Crank–Nicolson schemes are considered for approximating the time derivative. For the solution of the second-order scheme, we apply a double discretization approach within the space-time multigrid method. The good performance of the method is illustrated through several numerical experiments. © 2017 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems

We present and analyze a new space-time parallel multigrid method for parabolic equations. The method is based on arbitrarily high order discontinuous Galerkin discretizations in time, and a finite element discretization in space. The key ingredient of the new algorithm is a block Jacobi smoother. We present a detailed convergence analysis when the algorithm is applied to the heat equation, and...

متن کامل

Space-Time Approximation with Sparse Grids

In this article we introduce approximation spaces for parabolic problems which are based on the tensor product construction of a multiscale basis in space and a multiscale basis in time. Proper truncation then leads to so-called space-time sparse grid spaces. For a uniform discretization of the spatial space of dimension d with O(N) degrees of freedom, these spaces involve for d > 1 also only O...

متن کامل

Multigrid Reduction in Time for Nonlinear Parabolic Problems: A Case Study

The need for parallelism in the time dimension is being driven by changes in computer architectures, where performance increases are now provided through greater concurrency, not faster clock speeds. This creates a bottleneck for sequential time marching schemes because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for tem...

متن کامل

Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary ‎condition‎

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...

متن کامل

Compatible Relaxation and Coarsening in Algebraic Multigrid

We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 317  شماره 

صفحات  -

تاریخ انتشار 2018